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SYNOPSIS 

The aim of this article was to evaluate and analyze the mechanical properties of bonded 
elastomer discs subjected to triaxial stress on an MTS (machine for testing samples) equip- 
ment. Several pulling tests were run on an Instron machine using an O-ring type of samples 
to evalutate the mechanical properties of testing unfilled nitrile rubber subjected to uniaxial 
tension. It was found from the stress-strain curve of the O-ring samples that a very small 
stress softening occurred when the maximum strain is less than 200%. It was also found 
that the stress and strain a t  break does not drastically vary with respect to strain rate. The 
initial modulus does not vary with respect to strain rate up to c = 2 min-', and only for 
large values of c does the modulus depend on the strain rate. The material used for the 
uniaxial tension experiments were bonded between two rigid cylindrical steel plates and 
the specimens were subjected to uniaxial tension on an  MTS machine. It was found that 
the initial modulus in tension was smaller than in compression. The theoretical predicted 
initial modulus from Gent's equation was much larger than experimentally estimated. I t  
was shown that the elastomer in the pancake tests was not incompressible and a value of 
0.494 was determined for the effective Poisson's ratio. A mathematical equation was derived 
for the effective Poisson's ratio as a function of the volume fraction of voids within the 
testing material. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Rubberlike materials are well known for their low 
shear modulus and their capability of sustaining 
large recoverable deformations. However, it is not 
well known as to their poor resistance to caviation 
when they are subjected to a triaxial state of stress. 
Because of its importance to the understanding of 
the microfracture process, reinforcement, adhesive, 
joint strength, and explosive decompression, several 
years ago, we started investigating the microcavi- 
tation process in thin elastomer discs with its top 
and bottom surfaces pokerchip glued to rigid plates. 
Following the previous researchers, 1,2 they call this 
type of specimen a pokerchip; however, in this ar- 
ticle, it will be called a pancake. This type of spec- 
imen was chosen because with an appropriate aspect 

* Present address: 31 Kanakari Street, 262 23 Patras, Greece. 
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ratio of diameter to thickness a state of stress close 
to a negative pressure field can be conveniently gen- 
erated at the center of the specimen when it is sub- 
jected to simple uniaxial t e n ~ i o n . ~ - ~  

It was found in our early studies8-l2 that the first 
detectable microcavitation as monitored with an 
acoustic emission sensor happened at  about 40% of 
the yield strain and microcavitation results in sig- 
nificant mechanical softening of the specimen.8~'0." 
The softening was attributed to the increase of void 
content due to continuous microcavitations. The 
apparent initial stiffness of the specimen is a func- 
tion of the aspect ratio and can be theoretically es- 
timated.2 However, in the process of our study, we 
found that, depending on the molding conditions 
and mold design, the apparent stiffness of some 
specimens deviated from the theoretical value and 
relatively fewer acoustic emission events at small 
strains were observed from these specimens. This 
article presents experimental facts as well as a theo- 
retical explanation of this abnormal behavior. 
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EXPERIMENTAL 

The chemical composition of the material used for 
this study is given in Table I. All the ingredients 
described in Table I were well mixed in an open two- 
roll mill, and to estimate the curing time of the com- 
pound, a cure-curve was obtained from the cone 
Rhe~meter. '~ Figure 1 shows the curemeter curve 
for the testing materials which indicates a minimal 
curing time 4.5 min. 

O-ring type of samples were cut from the milled 
batch of rubber and they were placed in an O-ring 
mold. Samples were cured in a press machine at T, 
= 370"F, P, = 640 psi, and t, = 4.5 min. After the 
completion of the curing process, the mold was re- 
moved from the press machine and the samples were 
taken out from the mold. Before the O-rings spec- 
imens were subjected to uniaxial tension in an In- 
stron machine, they were left at atmospheric con- 
ditions for several hours. 

An Instron tensile testing machine was used for 
tensile tests. O-rings were held between the spools 
of pneumatic grips and they were stretched at  a con- 
stant speed from 0.1 to 20 in./min. The initial mod- 
ulus was determined by stretching O-ring specimens 
at very low speed (0.1 in./min) , and a high chart 
speed was maintained to increase the accuracy of 
strain determination. The initial modulus was then 
calculated from the slope of the stress-strain curve 
at zero strain. A more accurate determination of the 
initial modulus can be performed by plotting the 
ratio stress/strain (a/&) vs. the strain ( c )  at low 
speed. 

Uniaxial mechanical properties of the vulcani- 
zates was measured using a number of O-ring spec- 
imens. The inside diameter of the O-rings was 1.859 
in. and their thickness was 0.1270 in. (within less 
than 1% error). A micrometer was used for mea- 
suring the thickness of each sample. The O-rings 
were tested on an Instron testing machine for a va- 
riety of crosshead speeds from 0.1 to 20 in./min. 
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Figure 1 
ber. 

Curemeter curve from an  unfilled nitrile rub- 

A number of pancake specimens were also pre- 
pared for mechanical tests for the study of the mi- 
crocavitation process within these types of speci- 
mens. Thin cylindrical pieces cut from the mixed 
batch were sandwiched between two metal plates 
and placed in an appropriate mold for curing. The 
metal surfaces were first sandblasted and well 
cleaned by a suitable solvent. A primar coat (Chem- 
lock 205) was sprayed on the surface of the metal 
plates and they were left overnight to dry at  room 
temperature. The bonding agent ( Chemlock 250) 
was sprayed on the top of the Chemlock 205 and 
was dried for several hours. The inside of the mold 
was sprayed with a silicon mold release to ease the 
removal of the bonded rubber cylinder. All the sam- 
ples were cured at T, = 370°F, P, = 1600 psi, and t ,  
= 45 min and the long curing time was selected to 
give sufficient time for the temperature in the elas- 
tomer disc to reach 370°F. The diameter of all sam- 
ples was 6 in. and the thickness was varied from 0.2 
to 0.4 in., i.e., the aspect ratio ( D / h )  (varies from 
30 to 15). The pancake specimens were tested on 

Table I Chemical Composition of the Unfilled Nitrile Rubber Samples 

Chemical Compound Parts ( g )  Density (g/cc) Vol. Fraction ui 

NBR (Krynac-800) 100.0 
Zinc oxide 5.0 
Stearic acid 1.0 
N-Isopropyl-N-phenyl-p-phenylenediamine 1.0 
Magnesium carbonate-treated elemental sulfur 2.0 
Benzothiazyl disulfide 1.5 

1.060 
5.470 
0.847 
1.300 
2.070 
1.300 

.949821 

.009203 

.011887 

.007745 

.009728 

.011617 

Total 110.5 



MECHANICAL PROPERTIES OF BONDED ELASTOMER DISCS 253 

an MTS (machine for testing samples), and to ex- 
amine the possible fracture mechanisms within the 
deformed specimens, the so-called acoustic emission 
( AE) was applied. The results of this nondestructive 
method from the pancakes were presented in pre- 
vious articles.8*" To examine the possible volume 
change in the pancake specimen, the lateral con- 
traction was measured at the midplane of the spec- 
imen using a ~a l iper .~J ' J~  

Along the course of these studies, samples (pan- 
cake) of the geometry shown below were tested. 
These samples were subjected to uniaxial tension or 
triaxiul stress on an MTS machine. The pulling speed 
of the piston was kept constant (up = 0.01 in./min) 
for all the tests. The strain rate E was also kept con- 
stant for every test, but it depends on the thickness 
of the specimen. In our experiments, the 1. was varied 
between 0.0265/min and 0.0488/min. In other 
words, the experiments on the bonded elastomer 
disks were conducted at a low strain rate. 

RESULTS AND DISCUSSION 

Stress Response of Unfilled O-ring Nitrile 
Rubber Samples 

The inside and the outside diameters of the testing 
O-ring (sample B-2) was di = 1.895 in. and do 
= 1.996 in., respectively. The cross-section area A. 
of the sample was 0.0685 in.2 The O-ring was placed 
between two spools on the Instron testing machine. 
When no load was applied on the O-ring, the sep- 
aration distance between the spools was equal to do 
= 1.803 in [see eq. ( A-1 ) ] and the radius of each 
spool was equal to c = 0.25 in. 

Figure 2 shows the response of an O-ring rubber 
sample subjected to uniaxial tension. The sample 
was pulled up to 100% strain and it was left to return 
to undeformed state with the same speed as in the 
loading case (1. = 0.352 in.-'). 

Small hystereses were observed along the un- 
loading path of the samples. After the first run was 
over, the O-ring was subjected to 220% strain and 
it was left to return again to the undeformed state. 
On the third run, the sample was pulled to rupture. 

Figure 2 indicates that the engineering stress and 
strain at break are g b  = 250 psi and &b = 400%, re- 
spectively. The strain computation was based on eq. 
(A-8). The stress computations were based on the 
undeformed area A. of the O-ring, and it is usually 
called nominal stress.' To calculate the initial mod- 
ulus of the material, a plot of the nominal stress 
divided by the strain ( U / E )  vs. strain ( E )  was made 

(see Fig. 2 ) .  The intersection of the straight line 
with the vertical axis at zero strain indicates the 
initial modulus of the material, whose value is equal 
to E = 216 psi. 

The pronounced hysteresis observed in the first 
stress cycle of unfilled rubber (Fig. 2) manifests ir- 
reversible processes. The next constant strain rate 
cycles are then always nearly reproduced, showing, 
in general, a weak hysteresis mainly originated with 
relaxation. A phenomenological treatment of this 
effect was given by Mullins and Tobin.14-16 

Variation of the Initial Modulus and Stress and 
Strain at Break with the Strain Rate 

Several unfilled nitrile rubber O-rings were tested 
with a variety of strain rates." The chemical com- 
position of the testing O-ring specimens is depicted 
in Table I. Table I1 shows the average values of the 
initial modulus E and the stress Isb and strain &b at 
break for various values of strain rate 1.. Figure 3 
shows the variation of ( E )  vs. the strain rate 1.. 
Clearly, it can be seen from the graph that the av- 
erage modulus ( E )  remains constant up to strain 
rate 1. = 2 min-', and after that, the ( E )  value in- 
creases rapidly as the strain rate increases. 

Since the average modulus does not change with 
respect to the variation of strain rate (for low values 
of E )  , this indicates that the material does not exhibit 
uiscoelusticity at low 1.. However, at large E,  the vis- 
coelasticity starts playing an important role and we 
attribute the hysteresis in the stress /strain curve 
(Fig. 2)  to the existence of voids within the O-rings. 

A plot of the average value of stress 'Tb and strain 
&b at break as a function of strain rate 1. is shown in 
Figure 4. We observe that both curves do not show 
a significant increase with respect to strain rate. This 
indicates that the viscoelasticity is not a primary 
factor in the uniaxial extension of an unfilled nitrile 
rubber. In Figure 4, we observe that the strain at 
break &b oscillates around the average value ( & b )  

= 3.51 in./in. 
A plot of stress at break (Tb vs. the strain at &b is 

shown in Figure 5. All the points fall on a straight 
line of slope y = 1.56. This graph is usually called 
the Smith's p l ~ t . ' ~ ~ ' ~  

The Reduced Mooney-Rivlin Representation 

A discussion of the stress-strain behavior of unfilled 
systems in terms of a reduced mechanical equation 
of state provide some interesting and novel insights: 
The reduced mechanical equation of state in the 
mode of simple tension, is given byla: 
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Figure 2 
subjected to uniaxial tension. 

Observed stress-strain curve with hysteresis from an unfilled nitrile rubber 

where a denotes the Piola stress (nominal stress), 
and A, the principle extension and C1 and C2 rep- 
resent the Mooney-Rivlin  constant^.'^ 

A plot of a/( X - X-') vs. the inverse of the prin- 
ciple extension ( l / X )  is shown in Figure 6. All the 
points up to 150% strain fall on a straight line of 
slope 2C1 = 42 psi and interection 2Cz = 32 psi with 
respect to vertical axis at 1 / X = 0.0. The intersection 
of the same line with the axis 1 / X  = 1 represents 
the shear modulus G of the unfilled nitrile rubber 
whose chemical composition is given in Table I. The 
shear modulus of the material was found being equal 
to G = 72 psi and the Young's modulus E is equal 
to 3G, i.e., 216 psi, which is equal to the value es- 

timated from the plot a/& vs. e of Figure 2. A mod- 
ification of the reduced mechanical equation of state 
for simple tension of filled systems was derived by 
Kilian and Schenk.*' 

Fitting the Experimental Data 

Bla tz- Kaka vas €qua tion 

Several mathematical equations have been proposed 
for fitting the stress-strain curve of an unfilled rub- 
ber.lg In this article, we propose the following equa- 
tion for fitting the experimental curve: 

e = ( 1 + a i)'" - 1 

where e = In ( A )  represents the logarithmic strain 
( A  being the extension ratio), a is a parameter to 

Table I1 
Strain Rate 

Average Value of the Stiffness E and Nominal Stress and Strain at Break for Various Values of 

20 
10 
5 
1 
0.2 
0.1 

7.052 
3.526 
1.763 
0.3526 
0.0705 
0.03526 

260.5 
233.0 
189.0 
187.75 
183.66 
184.02 

299.0 
306.0 
272.0 
202 
152 
224 

3.79 
4.63 
4.46 
3.63 
2.64 
3.67 
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Figure 3 
nitrile rubber subjected to uniaxial tension. 

Initial modulus vs. strain rate from an unfilled 

be determined by fitting, E indicates the modulus 
of the material, and t denotes the Cauchy stress. 

Figure 7 shows the experimental points with solid 
dots from an unfilled nitrile rubber whose chemical 
composition is given in Table I. Equation (2)  fits 
the experimental points up to e = 1.2 or equivalently 
up to strain E = 232%. In other words, the proposed 
equation is doing very well for small and moderate 
high strains. Equation (2)  cannot fit well the points 
near the rupture of the material. 

One-term Ogden's Equation 

For simple tension, the one-term Ogden's equation 
is given by l9 : 

where G represents the shear modulus ( G  = E / 3 ) ;  
17 is an undetermined parameter, to be determined 
by fitting the eq. (3)  with the experimental data; 
and t denotes the Cauchy stress based on the de- 
formed cross-section area of the O-ring. 

In terms of the logarithmic strain e ,  eq. ( 3 )  can 
be readily rewritten as follows: 

17 

Taking q = 1.6, eq. (4) fits very well all the exper- 
imental points up to break (see Fig. 7) .  

strain rate (min-'1 

Figure 4 
rate from an unfilled nitrile rubber. 

Nominal stress and strain a t  break vs. strain 

STRESS-STRAIN BEHAVIOR OF BONDED 
ELASTOMER DISCS SUBJECTED TO 
TRlAXlAL STATE OF STRESS 

Figure 8 shows the geometry of the testing pancake 
samples. Figure 9 shows a typical observed stress- 
strain curve at low strain values from the triaxial 
stress test (pancake) of the unfilled nitrile rubber 
whose chemical composition is described at Table I. 

For all the testing specimens, the modulus in ten- 
sion varied from 6100 to 2700-2500 psi, whereas the 
modulus in compression varied from 4400 to 6100 
psi. When the material was tested in tension for the 
second time, the modulus was reduced approxi- 
mately 8-10%. In contrast, the modulus in com- 
pression remains almost the same as in the first run. 
The modulus in each case was estimated by taking 
the slope along the straight part of the curves as 
shown in Figure 9. The slack at  the beginning of the 
deformation does not allow one to estimate precisely 
the modulus in tension and compression. However, 
the modulus in tension is smaller than in compres- 
sion (Mc/MT NN 2.259). 
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IILAMDA 

Unfilled nitrile rubber stress-strain curve in Figure 6 
terms of the reduced variables. 

The lateral contraction as a function of the strain 
e was given in Ref. 11. All the points at low strain 
fall on a straight line whose slope is about 0.378. All 
the other points fall on a straight line whose slope 
is 0.234. If we denote by -uo(a)/a the lateral con- 
traction at the middle plane of the sample, then the 
equation of the lateral contraction vs. strain, at low 
strain, is given by 

0 0.5 1.0 1.5 2.0 

Figure 7 Fitting the uniaxial data with one term in 
Ogden’s strain energy function and with Blatz-Kakavas 
equation. 

e=ln(A 1 

PANCAKE SAMPLE 
z,w 

Figure 8 Typical geometry of a pancake sample. 

where a is the radius of the sample. As will be dis- 
cussed in the next section, eq. (1) suggests that the 
elastomer disk is not truly incompressible. 

According to Gent’s equation4g5 for incompressible 
solids, the modulus of the pancake M ,  with respect 
to the Young’s modulus, is given by 

M - = 1 + 2s2  
E ( 6 4  

where the geometric factor S is defined by 

D s = -  
4h 

200 
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140 
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.d g 100 

b 
80 
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0 
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Figure 9 Process stress-strain curve at  low strain from 
the triaxial test experiment in tension and compression. 
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Table I11 The Lateral Contraction over Strain 6, as a Function of the Poisson’s Ratio u 

u 0.450 0.460 0.470 0.475 0.477 0.478 0.480 0.485 0.490 0.493 0.495 0.499 
6 0.141 0.161 0.188 0.208 0.217 0.222 0.233 0.267 0.322 0.373 0.424 0.634 

and D and h define the diameter and the thickness 
of the pancake, respectively. Since, the Young’s 
modulus for this material is 180 psi (see Fig. 2) and 
the geometric factor S is about 7.5, the modulus of 
the pancake should be theoretically equal to 20,429 
psi. Obviously, this value is much higher than that 
observed from our experimental measurements (see 
Fig. 9). Equations (6) also predict that the modulus 
in compression and tension must be equal. In con- 
trast, our experimental observations show that there 
is a difference between these two moduli. 

The questions that we must pose at this point 
are the following: 

(i) Why is M c a ~ c  % Mobser? 
(ii) Why is the modulus in tension and 

compression different? 
(iii) What is the reason for the stress softening 

along the successive loading of the speci- 
men? In this article, we will give a complete 
answer to the first question and speculative 
accounts will be taken for answers to the 
second and the third questions. 

EFFECTS OF VOIDS ON THE RESPONSE 
OF UNFILLED BONDED NITRILE 
ELASTOMER DISCS SUBJECTED 
T O  TRlAXlAL STRESS 

The geometry of a testing sample and the coordinate 
system used for the analysis is shown in Figure 8. 
Let us denote by a and h the radius and the thickness 
of the specimen, respectively. Following the linear 
stress analysis, it can be shown8*’l,l2 that the dis- 
placement fields u ( r ,  z )  and w ( z )  are 

wherep= k r , ~ = 2 / h [ ( 3 - 6 v ) / ( 2 - 2 ~ ) ] ~ ’ ~ , I ~ ( ~ )  
defines the modified Bessel function of first order, 
and the coefficient A is given by 

where I,, ( - ) and Il define the modified Bessel func- 
tions of zero and first order, respectively, and E de- 
fines the strain within the pancake specimen. Sub- 
stitution of eq. (8) into (7)  yields the lateral con- 
traction at the middle plane of the pancake ( z  = 0, 
r = a )  i.e.: 

where 

o(ka)  6 ( 1  - 2n) 
m = ka-* 

l , ( k a ) ’  ( 1 - V )  ) ( l o )  

When a + 0, then m + 2 and eq. (5)  becomes2’ 

-uo(a) 3ue +- 
U 2 

When a + co , then m + ka and eq. (5)  becomes21 

% ( a )  -- 
U 

(12 )  
3vc 

2 { ~ * [ 6 ( 1  - 2 v ) ( l  - v ) ] ” ~  - ( 1  - 2 ~ ) )  
- - 

where a* = a / h  ( a  = radius, h = thickness). A typ- . .  . ~ & . .  . . *  ical value of a” for our experiment was about a* 
= 8. At a* = 8, m is close to ka; using eq. ( 9 )  for 
the lateral contraction and (12 ) ,  the value of the 
effective Poisson’s ratio ueff, may easily be deter- 
mined. Using either the tables or IMSL subroutines 
for the estimation of the I. (ka )  and Il (ka)  , one ob- 
tains the following values (see Table 111) of the dia- 
metral contraction F = uo ( a )  lac as a function of u .  

As Table I11 indicates for 6 = 0.378, the effective 
Poisson’s ratio must be equal: 

This low value of the Poisson’s ratio indicates 
that the elastomer disc in the pancake is not incom- 
pressible ( u  = 0.5). Also, we know that a homoge- 
neous unfilled nitrile rubber is incompressible. Why 
does such an  apparent contradiction exist? We attri- 
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bute this to the existence of voids in the pancake, 
whose appearance possibly was introduced during 
molding. It can be s h ~ w n ~ ~ ' ~  that the volume dila- 
tation is given by 

4GBo 
Or = -p - 7- 

2GB0 
U8 = -p + - 

r3  

AV 
v, 

(1 - v ) m  - 1 
m ( 1 -  v )  - (1 - 2v)  (14)  -- - &  Substitution of (18) and (19) into the equilibrium 

equation, i.e., 

where V, defines the initial value of the material, 
i.e., V, = aa2h and AV = V - V, ( V  = final volume 
of the sample). When a --* 0, then eq. (10) becomes 

yields p = constant = po.  The boundary conditions 
AV -- - &(l - 2v) 
VO u r = O  at r = a ;  u r =  T at r =  b (23)  

yield the value of Bo, i.e.: When a + to, then eq. ( 10) becomes 

Tb 3a 
4G(1 - a )  

Bo = a * ( 6 ( 1  - 2v) ( l  - v ) ) ' I 2  - 1 
a * ( 6 ( 1  - 2v) ( l  - v ) ) ' l 2  - (1 - 20) (16) 

AV 
v, 
- -  - &  

where a = ( A  / B ) and the value of p o ,  i.e.: 
For u = 0.494, eq. (12)  yields 

P o = - -  1 - a  
-- A' - 0.7024 
VO 

(17) 
From the stress-strain curve of the pancake sam- 

ple (see Fig. 9 ) ,  we observe that the apparent yield 
point occurs at c = lo%, at which the volume di- 
latation is 0.07024. 

It can readily be s h ~ w n ~ . ' ~  that the modulus M 
of the pancake may be related to the Young's mod- 
ulus E of the material via the following equation: 

i.e., the volume dilatation increases linearly with re- 
spect to apparent strain & of the pancake. 

ESTIMATION OF INITIAL 
VOIDS CONTENT 

1 
(1 - 2 v ) ( l  + U )  - M 

E 
- -  

Following Warren's idea,22 we assume that all the 
voids in an incompressible material are located in a 
sphere of initial radius A ,  and the rest of the rubber 
is molded in a spherical shell of initial radius B ,  of 
the same center as that of the sphere A .  Since the 
material is incompressible, we may write l9 

] (26) 
2v 

(1 - v ) m  - (1 - 2v) 

When a + 0, then m + 2 and eq. (14) yields ( M /  
E )  = 1. When a + co, then m + ka and (26)  yields 

2v2 
a * ( 6 ( 1  - 2 v ) ( l  - v ) ) ' / *  - (1 - 2v)  

- 

The solution of this simple equation is 

Equation (27) yields the ratio M / E  as a function 
of the aspect ratio a* and the Poisson's ratio u .  Let- 
ting a* = 8, then using either the tables or the IMSL 
subroutines ratio, M / E  can be obtained for different 
values of u .  Table IV shows the ratio M / E  vs. u .  

BO u ( r )  = - 
2 

and the radial and tangential Piola stresses arelg 
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Table IV 
as a Function of the Poisson’s Ratio; Aspect Ratio = 8.0 

The Modulus of the Pancake Normalized upon the Young’s Modulus 

U 0.470 0.475 0.480 0.485 0.490 0.492 0.493 0.494 

M / E  4.66 5.33 6.26 7.67 10.06 11.56 12.52 15.07 

Our experiments have shown that the ratio M / E  
is of order of 15 (Fig. 9, curve 2f). Note that the 
measurements for the lateral contraction were taken 
during the loading path 2f. Hence, from Table IV, 
the Poisson’s ratio is about 0.494, which agrees with 
the measured value from the lateral contraction 
measurements. 

Substitution of ( 2 2 )  and (25) into (20) and ( 2 1 )  
yields the stresses 6, and us, i.e., 

T b3a 
ur = - [ 1 - -7-1 and 

1 - a  

Substitution of ( 2 4 )  into (19) yields the displace- 
ment u(r) .  Indeed, 

Tb3a 
4G(1 - a)r2 

u(r)  = 

Assume now that the material is compressible 
without holes; then, the stresses u, and uR are defined 
in spherical coordinates byz3 

2G 
1 - 2v ur = - [ ( l  - v)u, + 2vu/r] (30a) 

where u, = du/dr. 
The displacement field u(r) must satisfy the 

equilibrium eqs. ( 2 2 )  and the boundary conditions, 
1.e.: 

u(r = 0 )  = 0 and u(r = b) = ub ( 3 0 ~ )  

Substitution of eqs. (30a) and (30b) and utilizing 
the boundary conditions ( ~ O C ) ,  the displacement u(r) 
at any point in the compressible sphere is 

( 3 0 4  
ub u(r) = - r 
b 

Since u, = T is on the outer surface of the sphere, 
eq. (30) yields the hydrostatic tension Ton the outer 
surface, i.e.: 

2 ( 1  + V)G ub T =  
1 - 2 v  T 

Evaluating (29) at r = b and equating u(b)/b to 
ub/b via eq. ( 3 1 ) ,  one obtains the relation between 
a and u. Indeed, 

2 - 3a 
V e f f  = - 4 - 3a 

Substitution of eq. (32) into ( 1 2 )  yields the lateral 
contraction as a function of a, i.e.: 

So, experimentally, it was found that the left- 
hand side of (33) is equal to 0.234; eq. (33)  yields 
that the volume fraction of voids is a = 0.0978. 

Replacing u by its equivalent expression (32) into 
eq. (27), one obtains the modulus of the pancake as 
a function of a. Indeed, 

( 2  - 3a}2 
- -  
E 9a(l - a) 2m - 3a 

where 

Equation (34) correlates the modulus of the pancake 
sample with the Young’s modulus of the material 
and the volume fraction of the voids (a* = a /h  [as- 
pect ratio]). 

CONCLUSIONS 

During this research investigation, it was found that 
the unfilled nitrile rubber O-ring sample subjected 
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to uniaxial tension does not exhibit viscoelastic ef- 
fects for low strain rates. However, they do show 
visoelastic behavior whenever the O-ring is pulled 
at high strain rates. It was also shown that the one- 
term Ogden strain energy function fits the uniaxial 
data very well, whereas the Mooney-Rivlin function 
of two parameters does not fit the experimental data 
for large extensions. Experimental stress-strain 
curves were also extracted from the pancake type of 
samples subjected to uniaxial tension. It was shown 
that the modulus of elasticity is very low compared 
to theoretical computations through Gent’s equa- 
tion. The softening of the material was attributed 
to the existence of voids within the prepared pancake 
samples. Following linear stress analysis, the mod- 
ulus of elasticity for the pancake tests was computed 
as a function of Poisson’s ratio and the aspect ratio 
a.  From the experimental evaluation of the ratio 
M I E ,  one can easily compute the Poisson’s ratio 
for the testing material. It was find that for the test- 
ing material u = 0.494. Following Warren’s ap- 
proach, one can also find the connection between 
the Poisson’s ratio and the void content a ,  and we 
found that for our testing material a = 9.78%. 

Integration of eq. (A.3) yields 

b - a  ( b - a ) 2  ho 
- (A.4) 

X t i  
V =  2 ( d  + C )  - fi + =  

where d = d o  + A6, d o  is given by eq. (A.l) and Ad 
denotes the displacement of the O-ring from the un- 
stretched state. 

Assuming that the O-ring elastomer specimen 
is incompressible, then the left-hand side of eqs. 
(A-2 ) and (A-4) are equal. Hence, 

where 

w 2  = x 

and 

d 
- + c  

APPENDIX A 

Strain Computation in an O-ring Rubber Sample 

When an O-ring sample is subjected to tension in 
an Instron machine, it is placed between two spools 
of radius c (see Fig. 2 ) .  The initial distance d o ,  be- 
tween the spools can be readily found using the 
equation 

The solution of the (third degree) algebraic eq. (A.5) 
is given by 

X = w 2 [  (: + A )  + B f i ] 1 1 3  

+ [ (y  + A )  - B Crl3 + 2(  $ + A)113 (A.8) 

where 
where a denotes the inner radius of the O-ring. The 
initial volume of the O-ring sample is given by 

where b denotes the outer radius of the sample. 

of the sample becomes 
When the O-ring is stretched, then the volume 

V = h [ 2 d  + 2 a ( c  + x ) ]  dx (A.3) 

where 

ho b - a  h = -  and e = -  ti 6 

A =  ( b  + 1 a ) 2  [ (b;a)^  - -- 27 B ( b  + a) (A.9) 

Therefore, given Ad,  we calculate d = d 0 + Ad and 
then we estimate the extension ratio X via eq. (A.8). 

The author is indebted to Drs. P. J. Blatz and W. V. Chang 
for helpful discussions on this experimental research and 
also for teaching him the theory of rubber elasticity. Most 
of the work was carried out at the Department of Chemical 
Engineering, University of Southern California, Los An- 
gleles, CA 90089, and at Parker Hannifin Corp., Culver 
City, Los Angeles, CA 90230. 
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